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ABSTRACT

| nterpretation of magnetic resonance angiography (MRA) is problematic due to
complexities of vascular shape and to artifacts such asthe partid volume effect. We
present new methods to assst in the interpretation of MRA. These include methods for
detection of vessdl paths and for determination of branching patterns of vascular trees.
They are based on the Ordered Region Growing (ORG) agorithm that represents the
image as an acyclic graph which can be reduced to a skeleton by specifying vessdl
endpoints or by apruning process. Ambiguitiesin the vessd branching due to vessd
overlap are effectively resolved by heuristic methods that incorporate a priori knowledge
of bifurcation spacing. Vessel paths are detected at interactive speeds on a500 MHz
processor using vessel endpoints. These methods gpply best to smdler vessals where the
image intendty peaks at the center of the lumen which, for the abdomina MRA, includes

vesals whose diameter is lessthan 1 cm.

1. INTRODUCTION
MRA isusudly interpreted from the source images or from the maximum intengty

projection (MIP):2>4, The MIPis ussful because it is three-dimensiond in nature and



thus clearly shows the overall shapes and paths of the vessels. However, the MIP reduces
the contrast-to-noise ratio of the image resulting in poor visudization of smdl vessds
Furthermore, the arteries may be obstructed by overlgpping, high-intensity structures

such as nearby veins or other arteries.

A number of methods have been developed to improve MRA visudization. One method
isthe use of anc interpolation to improve the visudization of the smdler vessdsin the
MIP®. Filters have also been developed which sdlectively enhance vessels which make
use of their tubular shape®”#°. These methods are user-independent but do not overcome
problems of overlap of vessals with one another and with other anatomica structures. In
this regard, the isointendity- surface visudlization has been shown to be helpful for
interpretation by providing 3D depth cues'®12 but suffers from a dependence on the
sdlection of agngle intengty threshold level. 1n this paper we present new gray-scale
skeletonization methods for the determination of vessel paths and vessdl tree structures
from MRA. These methods dlow for the isolation of the vasculature from other

anatomical structures and the isolation of sub-trees of the vasculature from one ancther.

We will firg discuss rdlevant methodol ogies which include segmentation and axis
detection methods. We then present the ORG agorithm for skeletonization of gray-scale
images. We discuss the application to abdomina MRA where the MIP may have poor
quality due to high image noise, venous contamination and the presence of other high-
intengity, overlgpping structures. For thistype of image, skeletonization requires explicit

selection of the origin of the vascular tree and dl vessd endpoints. We then present a



method for pruning of the ORG graph to produce a skeletonization. This method requires
only the specification of the origin of the vessd tree and two parameters describing the
topology of the vessd tree and is suitable for images with minimal image noise. We
address the problem of determining vessel paths within dense vessdl trees where nearby
vessdls can be mistakenly connected in the skeletonization. We present a heurigtic
method for preventing this type of error based on a modification of the ORG dgorithm
and the pruning process. Findly we show that the skeletonization of the Circle of Willis
(COW) MRA dlows for asophigticated cropping of the image to reduce the complexity

of the vesd trees.

2. Background

A variety of methods have been developed for detecting vessdswithin MRA. One class
of methods segments or classfies voxds within the image into either vascular or non
vascular regions. The Smplest ssgmentation method is intendity thresholding whereby
points are classified as elther greater or lessthan agiven intendity. Thisisthe bass of the

od %1112 This method suffers from errors due

iso-intendty surface reconstruction meth
to image inhomogeneities and the partid volume effect. Furthermore, the choice of the
threshold levd is subjective.

Problems with intengity thresholding have been addressed by other segmentation
methods that include the k- means dustering method"**2, fuzzy connectivity', the
marker-controlled watershed™ and topologically adaptive deformable models'®!’. These
methods make use of the spatid continuity of points within the vascular tree in addition

to the intensity contrast between the vessals and the surrounding tissue. However, spatid



continuity is poor dong narrow elongated objects such as smaller blood vessdls. Thus,
while these methods are adequate for sesgmentation of larger vessals, they commonly
truncate the smaller vessals™ .

An dternative to segmentation is axis detection. Thisis an atractive agpproach
since vessdls have a distinctively tubular shape that can be detected by the 2" order
partia derivatives of theimage. Severd methods have been developed based on this
principle and multi- scale schemes to alow for the diversity of vessdl sizes!81920,
However, the 2" derivative operations are local in nature and thus these methods require
secondary operations to compose complete vessel axes. In one report, user interaction
was high, presumably due to problems at bifurcations where no sngle direction of the
vessdl can be determined'®,

We propose a new method of vessdl axis detection based on a single agorithm,
the ORG, which encompasses both the local and global aspects of vessel detectior?™.
The ORG produces a graph representation of the MRA image which describesthe
connectivities between dl voxesin theimage. From this graph, paths between any two
points in the image are readily extracted. Such paths track ridges in the image intensity
comparable to the marker-controlled watershed segmertation linesin 2D images .
Unlike smilar algorithms which represent the image as an acylic graph?>2324, the pathsin
the ORG graph have minima  dependence on seed location. The “live-wire’ method, for
example, will produce paths that have the least cumulative “cost” which isafunction of
the path length and image intengities dong the path. As such, highly curved paths are

discouraged and the method is only rdliable in the vicinity of the seed point.



The ORG dgorithm is defined asfollows. As shown in Figure 1, the ORG isan
iterative region-growing process whereby at any given iteration, growth occurs from the
point on the boundary of the grown region with the highest imege intengity.  For an N-
dimensond image| :ZV® Z, let R, represent the voxdswithin the region & iteration n.
Let B, bethe boundary of R, . At each iteration, B, | R,. Rgisany point or pointsin
the image which is the seed region which is specified by the user. By isthe boundary of
that region. G, isthen the set of growth points at the rf" iteration. Neighbor() refersto
the set of immediate neighbors of a single point, either 8 or 26-neighbor for the 3D case,
(26-neighbor is used here), and Max( ) refersto the point of maximum intensity of a set
of points.  If more than one point in By, shares the maximum intengity vaue, Max( ) is
arbitrarily chosen from amongst those points. If the intengity range within theimage is

large, this ambiguity is of minor importance.

$1= Max(By) ={x1 Bn| "yT Bn,1(x)3 I(y)} (1a)
Gn = Neighbor(s)) \ R, (1b)
Bu1= (B E Gn)\ (1c)
Rwi1=Rn E Gq (1d)

Certain advantages may be gained by the sdection of meaningful seed points such as
those a the origin of avascular tree of interest so as to establish the correct directionality
of the skeleton athough the connectivity, islargely independent of the seed-point

placement with sméll-scale variahility occurring in the vicinity of bifurcations™.

Connections or edges, E, can be described by the pair of points which they connect.



Evi= En E {(5.%) |G Gn} (2a)
E =/ (2b)
The directiondity, which may be meaningful by itself, can be expressed as a mapping

from agiven point to its parent P: ZN ® ZM

P@)=s (&l Gn) ©)

The ORG greph of a synthetic 2D image is shown in figure 2.



Figure 1. 2D example of ORG connectivity algorithm. Region grows to neighboring
points from a user-specified seed point (b in top diagram). The seed point for succeeding
iterations are the points of maximum intensity of the region boundary (b =s,). The
direction of the growth (shown by hash marks) isrecorded at each iteration and
cumulatively forms a graph respresentation of the image. The points b are the elements

of the boundary region B, .



Figure 2. ORG applied to a low-resolution 2D image (left) originating at the point
indicated by the arrow. The ORG acyclic graph are shown at right (directionality of
graph is not shown). A significant path is determined from this connectivity structure
and the indication of additional points (arrows on right). In thisway, centerlines of the
vesselsin the MRA can be detected by the indication of a single seed point at the
proximal end of a vascular tree and points at the distal ends of all terminal vessel
segments.



3. Skeletonization by explicit selection

3.1 Algorithm

Skeletonization of a given vessd tree can be performed by explicitly sdecting the origin
of the vessdl tree and the endpoints of the vessdls. The origin of the vessel tree serves as
the seed point of the ORG graph. Vessd paths are determined by smply retracing the

path from each endpoint to the ORG origin.

The skeletd paths are defined precisdy asfollows. For dl pointsi withinanimegel, a
skeleton, S, can then be defined as dl those points from which the set of user-defined
endpoints, EP, are descended as well as those periphera points themselves with the
connectivity of these points determined by the ORG agorithm. The set, Descendents(i),
are dl points which are descended from the point i in the course of the ORG growth.
More formdly, the descendents of i are al the points which are disconnected from the
rest of the graph if that point and its associated connections are removed.

A Path (ab) isthe set of points traversed going from ato b dong the ORG graph,

including aand b. This can be expressed asfollows.

Descendents(i) ={ dT I|iT Path(d, P(i)),d? i} (4)
Then:
S={il || Descendents(i) CEP! /£} E EP (5)

To avoid the larger vessels such as the aorta where the ORG skel etoni zation does not
apply, multiple seed points must be provided. For gpplication to hepatic MRA, seed

points are placed at the origin of the cdliac trunk and the superior mesenteric artery which



are two of the mgjor vessalsin the abdomen. In this case, no rlevant vessdl paths pass

through the aorta.

Once the ORG graph is congtructed, the vessd paths are determined in red-time for each
vessdl endpoint selected. Errorsin skeletonization occur if the selected point is not
directly on the vessd or if the segment of the vessd istoo faint to be detected by the
ORG dgorithm. In the latter case, the point must be re-selected at a more proxima point

aong the vessdl from which amore distinct path exists to the origin of the ORG.

3.2 Application

Angiography is essentid for pre-operative planning prior to hepatic perfuson for tumor
therapy and prior to liver transplantation. MRA has become aviable and lessinvasive
gpproach than conventiond digital subtraction angiography?®°. The ORG
skeletonization can be used to highlight rlevant vessd paths within the image as shown
infigure 3. This method has been found to accurately portray the vascular paths and to
be useful for 3D visudization of the vascular anatomy?’. Typically, distal points are
identified on the source images where the smdl vessels are mogt visible from which the
complete path back to the origin of the vessd treeis determined and displayed in a3D

form.
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Figure 3. Clarification of
anatomy of hepatic circulation.
The MIP view of the original
image is shown at the top. The
image on the bottom shows the
skeletonization produced by
explicit specification of endpoints
superimposed on the MIP showing
the paths of the smaller vessels
with greater clarity. Inthiscase
all distal endpoints of the vessels
are identified by the user while the
corresponding skeletal paths are
determined and displayed in real-
time. These endpoints may
identified either in individual
dicesor in MIP views.
Determination and documentation
of vascular anatomy of the liver
isimportant for surgical planning.



4. Skeletonization by pruning

4.1 Algorithm

A second method of skeletonization is one that requires the operator only to supply the
seed point and two parameters that describe the desired topology of the vessdl tree. This
method is based on a pruning process in which trivid branches are removed from the
ORG graph while true vessdl axes are retained. We propose a pruning process based
upon branch length. In this pruning process, branches are discarded if they do not have a

given minimd length. The concept of pruning by branch length is shown in figure 4.

The specific pruning criteriais that no branch is retained if the distance from the terminus
to the nearest bifurcation is less than a given minimum length. Thisresult is obtained as
follows. Let R be the region overgrown by the ORG in which the intensity of dl points
in the region are greater than some given threshold vaue. Let Siblingg(i) be the set of all

points with acommon ORG parent:

Sblingi) ={jT R|PG) =PG),i* j}

(6)

Let L bethe connectivity distance from agiven point i to its furthest descendent within
the ORG. Thisis effectively, the branch length of the pointi. The distance, D: ZN X ZM
® Z,isjud the number of connections between any two points within the connectivity
graph. (This definition can aso apply to two given edges in the graph.)

L@i): ZN® Z defined as



L(@i) =Maximum({ D(d, i) |dT Descendents(i) }) (7)
MIN be the minimum branch length which quaifies for a bifurcation; one parameter of

the skeletonization. Then Sisthe set of points condituting the pruned skeleton:

T={il RILHO<MIN-1}C {iT R| $kT Sblings(i), L(i) <L(k) } (8a)
D={ Descendents(t) | tT T}E T (8b)
S=R\D (8c)

The pruning process can be performed efficiently asfollows:

1. Compute ORG connectivity of given region R from seed point
2. Initialize branch lengths L (i) of all pointsto O
3. Until reach steady state (no further changes in values of L for any point) :
foralliinR if L(i))>L(P(®))-21then L(P(i))=L(3(i)+ 1
4. Initialize all pointsin a "skeleton” image, Skeleton, to 1
5 ForaliinR:
for all j siblings of point i
if L(i) < L(j) and L(i) < Min
then Skeleton(i) =0
6. Until reach a steady state (no further changes in any Skeleton)
for aliinR
if (Skeleton(Parent(i)) = 0)
Skeleton(i) = 0

The ORG growth can be constrained by a specified number of bifurcations as opposed to
agiven threshold intensity vaue. This method reduces the dependence of the

skeletonization on absolute image intengty vaues. This can be carried out efficiently by

updating the number of qudifying bifurcations in the course of the ORG growth.
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Minimum branch size

@

(b)

Figure 4. Skeletonization by pruning. A connectivity tree, such asis produced by the
ORG (a), can be reduced to its most essential components (b) by reecting branches
whose length is less than some given minimum, as is described in more detail in the text.
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4.2 Application to Circle of WillisMRA

The pruning skeletonization process applies best to low-noise images with minimad
inhomogeneities. Such conditions exist for the COW MRA.. The skeletonization was
tested on three images of the COW vascul ature obtained with a standard MRA Spoiled
Gradient Recalled Echo, time of flight sequence. (Flow compensated, magnetization
transfer background suppression, superior flow saturation, 25° flip angle, 1.4-mm thick
dices, 35ms TR, minimum TE, 256x224 matrix, 1 excitation.) Three regionswere
skeletonized in eech image induding the vessdl tree downstream from the basilar artery
and from the right and |eft middle cerebrd arteries (MCA). The minimum branch length
was st to 15 and 25 voxd units the number of bifurcations was 5 and 10. (The length of
abranch was considered to be the number of voxes within the branch). Each
combination of the two parameterswastested. A region immediaey upstream of each
seed point was nulled to prevent upstream growth of the ORG agorithm. An example of

aresult of skeletonization of the COW is shown in figure 5.

Each vessel segment within the skeleton was rated as correct if the origin of the segment
was attached to the correct upstream vessal segment. The region overgrown by the ORG
was nearly aways completely within the region of the vessals and thus nearly all

branches in the skeletonization corresponded to vessd branches.  The results of the
skeletonization are shown intable 1. In acropped 100x200x100 region of the image
that encompasses dl visible vessds downstream of the MCA, the entire skeletonization

computation requires less than 10 seconds on the MIPS 10000 195 MHz processor.
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Oneeror in dl of the skeletonizations was due to a leskage of the skeleton into a non-
vascular region, al other errors were due to incorrect connectivity of vessals. The
connectivity errors occurred where significant overlap of image intensity occurred
between nearby vessals. A greater number of errors occurred in the arteries descended
from the MCA than from the basilar artery due to a greater apparent density of vessels
descended from the MCA.  For aminimum branch length of 15 and for vessd treeswith
10 bifurceations, there were an average of 3.0+1.7 errorsin the MCA regions and
1.0£1.7 errorsin the basilar artery regions. These connectivity errors are most common
amongst the largest vessels which are present in both skeletons with 5 and with 10
bifurcations. Thusthe rate of this type of error does not increase proportionaly asthe
specified number of bifurcationsincreases. For example, for the MCA region with a

minimum branch length of 15 voxe units, there are 2.3+ 1.5 errors for skeletonswith 5

bifurcations compared to 3.0+1.7 errors for skeletonswith 10 bifurcations.



Torem,

Figure5. Skeletonization by pruning. Region of cerebral vasculature (middle cerebral
artery tree) was skeletonized by pruning process. MIP of region of original imageis
shown at left and 2D projection of skeletonization is shown at right. Bifurcation points
are indicated as the darker points. Direction of flow of the vessels, not shown in this
visualization, is also obtained from the skeletonization process. This skeletonization
requires only the identification of a single seed point at a proximal location on the
vascular tree and the nulling of the vessel in the upstream direction along with the
specification of the desired number of bifurcations and minimum branch length. Inthis
particular case, only one connectivity error was found in this result as indicated by the
arrow. Due to the conservative nature of the region growing for the purposes of this
study, some segments of vessels visible in the MIP are not represented in the
skeletonization.
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Study Number of Connectivity
Conditions Samples Errors
(average)

MCA (5,15) 6 2.3t15
MCA (10,15) 6 3.0£1.7
MCA (5,25) 6 2.1+15
MCA (10,25) 6 3.5+14
basilar (5,15) 3 0.0£0.0
basilar (10,15) | 3 1.0+£1.7
basilar (5,25) 3 0.0£0.0
basilar (10,25) | 3 2.0£1.7

Table 1. Performance of basic Skeletonization-by-Pruning algorithm on cerebral MRA.
Algorithm applied to middle cerebral arteries (MCA) and basilar artery in 3 MRA's.
Numbersin parenthesis in "study condition” column refer to specified number of

18

bifurcations and minimum branch length (in voxel units) respectively. The samples were

taken from 3 subjects with 2 MCA and 1 basilar artery trees from each subject.



5. The problem of vessel overlap

5.1 Modification of the ORG algorithm

The acyclic topology of the ORG graph is quite gppropriate for analyds of vascular trees
which are themsdlves nearly acydlic in nature. However, thismode has limitations when
applied to images of vessdl trees where gpparent loops occur when vessels are highly
overlapped. While, in some cases, the ORG agorithm can successfully separate the
distinct vessdls from one another, it is susceptible to error. Thisisthe source of nearly all
the errors described in the previous section. Apparent loops in the vessel tree result in the
incorrect joining of digtinct vessds. Since no loops can exist in the graph, for each such

error, asecond error will occur in which avessel segment is digoined from itsdf.

A gep towards resolving this problem isto alow for alimited number of cyclesto be
included in the graph. Pruning of this graph would then be smilar to before. However,
in this case, additional methods would be necessary to correctly reduce cyclesin the
graph to the correct acyclic form which correctly depicts the branching structure of the

vesls.

The degred graph which dlows for alimited number of cycles can be obtained by a
minor modifications of the ORG agorithm. Thisis clear from the following observation:
At points where vessals are incorrectly digoined in the ORG graph, continuity is usudly
obvious at thelocd level or within a cropped sub-region of theimage. If, for example,
the ORG dgorithm were only gpplied to the sub-region, the ORG would form an

uninterrupted path dong the vessd axis. Thus, the local ORG graph contains the desired
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connections which are missng from the globad ORG gragph. An automated scheme which
is derived from that observation is difficult to imaging since it requires the selection of

the size and location of the cropped region. However, another gpproach will produce
smilar results.  In this agpproach, growth occurs according to (1a-1d) except that
connections are formed between points of two different growth fronts that collide with
one ancther. An example of such acollisonisillugrated in figure 6. In effect, cycles

are formed in the ORG graph provided they are of sufficient circumferentid sze.

The path dong avessd axisto ether Sde of the collison is the same as that which would
be produced by aloca ORG growth that proceeds in asingle direction dong the vessd
axis. Thisistrue because ORG paths are independent of the direction of the ORG growth

that formed the path.
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Figure 6. Effect of vessel overlap on ORG process. A 2D test image simulates the effect
of distinct vessels appearing to overlap one another due to their close proximity
(arrowhead at left). The right image shows the region overgrown by the ORG
(originated at small arrowhead) at one given point in the process. In this case, the ORG
incorrectly connects the vessels at the overlap point and a breaks the connectivity within
avessdl (large arrowhead on right). However, these break points are usually relatively
obvious and can be mended asis discussed in following sections. Note also that within a
subregion of the image (dotted square on right) the ORG would produce the correct
connectivity along the vessal.



5.2 Implementation of a modified ORG algorithm

The modified ORG agorithm described in the previous section can be implemented in an
efficient manner using the assumption that significant collisonsthet digoin vessd
segments are uncommon and occur in isolation from one another. Under that
assumption, the size of a cycle formed in a collison can be determined smply by looking
upstream from each collison point until the common branch point is encountered. In
this case where the search only includes upstream points, circumferentia length can be

determined quickly.

The modification to the connectivity of the basic ORG (from equation 2) is described
below. A set of new edges, E', is added to the set of edges E of the basic ORG. The
qudificationsfor the edgesin E™ are described in (98).  Any cycle in the ORG graph
must have a circumferentid Sze greater than some minimum vaue, CSyin. Furthermore,
to enforce the assumption that cyclesin the graph occur in reative isolation from one

another, dl the cyclic edgesin E are required to be a distance of CSyi, from one ancother.

Let as, bean edge which connects the growth point s, at any iteration to one of its
neighbors, a which isdready inthe grown region R, (al Neighbor(s,) \ G ) (G,
defined in (1b). Let CSy:ZV"® Z beafunction which determines, for any given edge
added to the ORG connectivity & a given iteration, what the sze of the minimum-sized
cycleitisassociated with. Arbitrary isafunction that arbitrarily chooses one e ement of

aset which in this case is determined by the scan order a each iteration.



Epotn ={a% |CSn(aS) > CSmin} G{as|" €1 En,DEas)>CSnn} (9
E'n1 =EnE { Arbitrary(Epot.n) | Epotn & 4} (9b)

Eni= B E {(@%) 19T G} E Ena (%)

5.3. Modified skeletonization by pruning

The results of the basic skeletonization by pruning method (Section 4) can be improved
using the modified ORG. The method for extending the skeletonization by pruning is
heurigtic and is based on the observation that, within the higher-order branchings of the
vasculature, bifurcations do not occur in close proximity to one another. Evenin so-
caled trifurcations such asin the poplited artery, there is substantia separation between
two digtinct bifurcations. This observation is relevant to skeletonization since gpparent
trifurcations tend to be produced when two distinct vessels nearly intersect and are
incorrectly joined in the skeleton. This situation isillugtrated in Figure 7. The method

we propose removes trifurcation-like formations in the skeletonization.

First, the modified ORG graph ispruned as described in Section 4 without regard for
edges specific to the modified ORG except that branches upstream from collisons are not
pruned. Then dl possible dternative acyclic skeletonizations are formed by the incluson
of one or more of the cyclic edges produced by the modified ORG and a corresponding
removal of one of the original edges. For each of these dternative skeletonizations, the
onein which dl the bifurcations have the grestest degree of separation from one another

is preferred.
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Stepwise the dgorithm proceeds as follows:

1. Apply modified ORG algorithm.

2. Determine the basic skeletonization by pruning (section 4).

3. Determine if the basic skeletonization by pruning can be improved, in terms of
reducing any "trifucations”, by the inclusion of one or more of the "reconnection”
edges from the modified ORG. For each "reconnection” edge:

a. Add pointsto basic skeleton so as to complete the cycle associated with the
reconnection edge. For purposes of evaluating trifurcations, trim off any trivial
branches produced by this step( less than 5 voxel unitslong ).

b. Determine the most likely trifurcation point within the cycle (where the skeleton
literally dividesin three or where there are two bifurcations in close succession).
Then, remove the trifurcation: If the trifurcation is composed of two bifurcations
which are both within the cycle, simply remove the segment of the skel eton between the
two bifurcations so as to obtain an acyclic skeleton. Otherwise, consider the
trifurcation to be detected-but-not-corrected. In that case, arbitrarily remove an edge
in the skeleton adjacent to the trifurcation which is within the cycle so asto obtain an
acyclic skeleton.

Performance of the Modified Skeletonization by Pruning algorithm was evauated and
compared with that of the basic Skeletonization by Pruning. For these tests, adight
difference in the implementation of the Modified ORG from that described in (9) was
used in which the distance between any two cyclic edgesin E™ was consdered to be the
maximum of the distance from ether of the two pointsto their mutua bifurcation point in
the ORG graph as opposed to the sum of the distance from each of the two pointsto their
mutud bifurcation point. Thecydedze, CS , was determined in asmilar way. This
difference in implementation, we believe, is unlikdly to produce results sgnificantly
different from those that would be produced by a direct implementation of the dgorithm
described by (9). For these tests, the minimum cycle Sze, CSyin Was et to be the same

asthat of the minimum branch length.



The results were assessed only in the MCA artery region where there were a sizegble
number connectivity and directiondity errorsin pruning of thebasc ORG. The net
result of the modified skeletonization by pruning was that less than 1 connectivity error
occurred within the vessels skeletonized under dl conditions asisshownin Table 3. The
complete computation of the skeleton, after the interactive initidization of the dgorithm,

took less than 10 seconds on 100x200x100 region.
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Figure 7. Detection of incorrect skeletonization. Under conditions where two vessels
nearly intersect skeletonization based on the basic ORG may incorrectly connect the two
vessels at that point. Thus, rather than producing the correct connections of the vessel, a
trifurcation-like structure may be formed in the skeleton consisting of two nearby
bifurcations (two dark dots indicated by arrow at right). The existence of such
trifurcations can generally be distinguished from normal anatomy and thus such errorsin
the skeletonization can be corrected, as described in the text.
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Study Number of Added Correctly Remaining
Conditions Samples Connections Added Missng
(average) Connections Connections
(average) (average)

MCA (5,15) 6 1.0+0.6 0.5+0.5 0.3+0.8
MCA (10,15) 6 3.2+1.6 1.0+0.8 0.2+0.4
MCA (5,25) 6 1.5+0.5 0.8+0.7 0.2+0.4
MCA (10,25) 6 3.5+1.0 1.2+0.9 0.2+0.4
Table 2. Comparison of Modified Skeletonization by Pruning algorithm with the basic

Skeletonization by Pruning algorithm (algorithm 2). Refer to table 1 for explanation of
"study conditions".

Study Number of Undetected Detected but
Conditions Samples Connectivity Uncorrected
Errors Errors
(average) (average)
MCA (5,15) 6 0.8+1.2 0.2+0.2
MCA (10,15) 6 0.3+0.8 0.2+0.2
MCA (5,25) 6 0.7+1.1 0.3+0.3
MCA (10,25) 6 0.7+1.1 0.2+0.2

Table 3. Errorsin connectivity after application of trifurcation reduction algorithmin
MCA artery where there is greatest degree of vessel overlap.




6. Artery-artery separation

The high density and overlgpping nature of the cerebra vascular tree makes visudization
of individud vessdsin MIP projections difficult, particularly when vessds are highly
enhanced by high flow rates”® even with careful sdlection of the MIP orientation and dice
range. This problem has been addressed by the application of shaded surface display to
provide depth information'* and by a method whereby both the surface and media axes
are detected alowing for sdective colorizatior?®.  In alikewise, but more powerful way,
the cerebrd skeletonization can be used to improve the qudity of the visudization. The
method suggested here is to effectively disentangle or separate the arteria sub-trees.
Given that centerlines of vessals can be identified reliably by the methods described in
the previous sections specific vascular sub-trees can easily be identified, based on, for
example, the specification of the origin aparticular vessel. Points nearby to the skeleton
downstream of the indicated point are set to zero intensty. Specificaly, good results
have been found zeroing out points within two 26-neighbor diletion iterations of the
downstream skeleton.  The result of the gpplication to a cerebra vascular tree is shown
in Figure 8. Once the desired skeleton of the vascular tree has been produced, this
disentangling procedure can be conducted in a very interactive manner; the norr

optimized speed isless than 5 seconds on a 100x200x100 cropped region.
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Figure 8. Artery-artery separation. The portion of the vascular tree downstream of a
given point on the vascular tree (arrow on left image) is nulled according to the
connectivity of the Modified ORG Skeletonization within 2 iterations of a 27-neighbor
dilations. Note a small section of an artery has been unintentionally nulled (arrow in
right image) due to the close proximity of distinct vessels. This method is useful for
obtaining an unobstructed view of individual vesselsin the cerebral MRA.



7. CONCLUSIONS

In this paper we address the problems of visudization and characterization of smal
vesselsin MRA which are inadequately resolved by other methods.  These problems
include that of detection of the paths of smaler vessals under conditions where regiona

or intensity-based segmentation methods are inadequate in the abdomind MRA and the
problem of determination of the proper connectivity or anatomica relations of the vessds
such asin the cerebral MRA.  Like severa other methods'®1%2° these problems are
addressed within the framework of gray-scae operations, but the new principle of ORG
connectivity applied to this problem incorporates globa gray-scae intensity properties
and topologica congraints into the formation of the centerlines both of which are absent
from previous methods. Specificaly, paths are formed according to the greatest-minima
property such that they follow the center of the vessds, to within the resolution of the
image grid, provided that the image intengty of the vessals peak towards their center,

whichistypicd for amdler vesselsin MRA.

In implementation, the methods are practicd and fast. All the methods are interactive in
neture but small-scde variationsin user input have rdaively minor effect onthe

resulting path determinations.  Methods presented for the detection of vessdlsusing ORG
connectivity in the abdomina MRA or in the smdler vessels of the cerebrd MRA arethe
mogt intensdly interactive requiring the specification of dl dista endpoints.

Improvement in the automation of this method within the context of the ORG is entirdy

possible and will be the subject of futurework. We aso believe that the paths may be



incorporated into improved methods for determination of vessd diameter and will be the

subject of future work.
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